
Tiny Recursive Models on ARC-AGI-1: Inductive Biases, Identity
Conditioning, and Test-Time Compute

Antonio Roye-Azar1,2, Santiago Vargas-Naranjo1,2

Dhruv Ghai1, Nithin Balamurugan1, Rayan Amir1

1Western University 2Varonova Tech Inc.
antonio@varonova.com

{svargasn, dghai3, nbalamur, ramir2}@uwo.ca

Abstract
Tiny Recursive Models (TRM) were recently proposed as a parameter-efficient alternative to large language
models (LLMs) for solving Abstraction and Reasoning Corpus (ARC) style tasks. The original work reports
strong performance and suggests that recursive latent updates enable non-trivial reasoning, but it remains
unclear how much of this performance stems from architecture, test-time compute, or task-specific priors. In
this technical note, we empirically analyze the publicly released ARC Prize verification checkpoint for TRM
on ARC-AGI-1. We report four behavioral findings and a small-scale efficiency comparison. First, we show
that test-time augmentation and majority-vote ensembling account for a substantial fraction of reported
performance: the 1000-sample voting pipeline improves Pass@1 by 10.75 percentage points over single-pass
canonical inference. Second, a puzzle-identity ablation reveals strict dependence on task identifiers: replac-
ing the correct puzzle ID with a blank or random token yields zero accuracy under the verification protocol.
Third, a recursion trajectory analysis shows that most of the final accuracy is achieved at the first recursion
step and that performance saturates after a small number of latent updates, indicating effectively shallow
recursion. Fourth, early-stage training experiments under canonical versus heavy augmentation regimes sug-
gest that heavy augmentation broadens the distribution of candidate solutions and improves multi-sample
success before single-pass accuracy improves. Finally, we compare TRM with a naive QLoRA fine-tune
of Llama 3 8B on canonical ARC-AGI-1, illustrating that TRM’s non-autoregressive design achieves much
higher throughput and substantially lower memory usage in this setting. Overall, our results suggest that
TRM’s strong performance on ARC-AGI-1 arises from an interaction between efficiency, task-specific con-
ditioning, and aggressive test-time compute, rather than from arbitrarily deep internal reasoning dynamics.

1 Introduction

The Abstraction and Reasoning Corpus (ARC) was
introduced as a benchmark for evaluating generaliz-
able, human-like reasoning in artificial systems [3].
ARC and its successors, ARC-AGI-1 and ARC-AGI-
2, are explicitly designed to be difficult for standard

large-scale pattern-matching methods, even when
such methods succeed on more conventional vision
and language tasks. Each ARC task consists of a
small set of input–output grid pairs and requires the
learner to infer and apply a transformation rule to
new inputs.

Large language models (LLMs) have recently
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demonstrated non-trivial performance on ARC-style
benchmarks when equipped with task-specific tok-
enization, chain-of-thought prompting, and test-time
training or adaptation [11, 9]. However, these sys-
tems typically have very high parameter counts and
incur significant inference latency and memory costs,
especially when they rely on multiple sampled trajec-
tories or search-based decoding.

Tiny Recursive Models (TRM) were proposed as
a contrasting approach that combines a small pa-
rameter footprint with recursive inference over latent
states [7]. In the original study, a 7M-parameter
TRM trained with heavy data augmentation and
deep supervision reportedly achieves strong perfor-
mance on ARC-AGI-1 and ARC-AGI-2 while operat-
ing at much lower memory and latency than typical
LLMs. This has led to interest in TRM as a “tiny but
capable” reasoning architecture.

Despite this interest, several aspects of TRM’s be-
havior remain insufficiently characterized:

• Role of test-time compute. The original pa-
per uses extensive test-time augmentation and
majority-vote ensembling, but the exact contri-
bution of this ensemble, relative to the underly-
ing single-pass model, is not fully quantified in a
standardized setting.

• Dependence on puzzle identity. TRM in-
cludes puzzle-specific embeddings indexed by
puzzle IDs. It is unclear to what extent perfor-
mance depends on these identifiers, as opposed
to the information present in the input grids
alone.

• Effective depth of recursion. The archi-
tecture allows multiple recursive latent updates,
and training uses deep supervision across many
steps. It is not obvious how many steps mate-
rially contribute to the final prediction in a de-
ployed checkpoint.

• Impact of augmentation on the solution
distribution. Heavy augmentation is used both
at training and test time, but its effect on accu-
racy and on the distribution of candidate solu-
tions is not well understood.

Understanding these factors is important for at
least two reasons. First, researchers may wish to
know whether TRM’s performance reflects general-
izable reasoning or a combination of dataset-specific
priors and test-time compute. Second, future work on
recursive or tiny reasoning models can benefit from
a clearer description of design trade-offs and failure
modes.

This note does not propose a new architecture. In-
stead, it aims to provide a careful empirical char-
acterization of an existing, publicly available TRM
checkpoint, with a focus on the relative roles of
identity conditioning, recursion depth, augmentation,
and test-time compute.

1.1 Contributions

We analyze the ARC Prize verification checkpoint for
TRM on ARC-AGI-1 and make the following contri-
butions:

1. Ensemble contribution. We reproduce the
verification performance on ARC-AGI-1 and
quantitatively separate the contribution of the
1000-sample test-time ensemble from that of
single-pass canonical inference, showing that en-
sembling yields a substantial absolute gain in
Pass@1 accuracy.

2. Puzzle-identity dependence. We design a
puzzle-identity ablation that replaces the correct
puzzle ID with either a fixed “blank” identifier or
random identifiers. Under both manipulations,
accuracy collapses, indicating strict functional
dependence on correct puzzle identity for this
checkpoint.

3. Recursion trajectory analysis. We evaluate
intermediate outputs of the recursive inference
process and compute accuracy at each recursion
step. We find that most of the final performance
is already present at the first step and that accu-
racy saturates within a small number of steps.

4. Training dynamics under augmentation.
We partially train TRM models under canonical-
only versus heavily augmented regimes and com-
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pare early training behavior. Heavy augmenta-
tion broadens the solution distribution and im-
proves multi-sample metrics before single-pass
accuracy improves.

5. Efficiency and LLM baseline. We compare
TRM to a naive QLoRA fine-tune of Llama 3
8B on canonical ARC-AGI-1, measuring mem-
ory usage, throughput, and accuracy to illustrate
TRM’s efficiency and inductive bias advantages
in this setting.

Across all experiments, we use publicly available
checkpoints, standard ARC-AGI-1 splits, and simple,
well-documented metrics, and we explicitly discuss
the limitations of our setup.

2 Related Work

2.1 ARC and ARC-AGI Benchmarks

ARC was proposed as a benchmark for general in-
telligence that emphasizes few-shot abstraction and
compositional reasoning rather than large-scale su-
pervised learning [3]. ARC-AGI-1 and ARC-AGI-
2 extend this setting and have been adopted in
challenge settings and leaderboards, including recent
ARC Prize competitions and public leaderboards [1].
Public reports and leaderboards show that a range
of systems, from program synthesis pipelines to fron-
tier LLMs with specialized prompting and test-time
training, achieve non-trivial but still subhuman accu-
racy, with a notable drop in performance when mov-
ing from ARC-AGI-1 to ARC-AGI-2 [4].

These benchmarks are intentionally small and
structurally diverse, which complicates standard
large-scale training and evaluation practices. As a re-
sult, many systems rely on heavy data augmentation,
hand-designed priors, or bespoke evaluation pipelines.
The present work follows this tradition in focusing on
ARC-AGI-1 as a concrete testbed, but differs in that
we treat a single publicly released model (TRM) as
an object of empirical analysis rather than proposing
a new system to compete on aggregate scores.

2.2 Recursive Reasoning Models and
Tiny Recursive Models

Hierarchical Reasoning Models (HRM) were pro-
posed as a class of small recurrent architectures oper-
ating over latent states to solve structured puzzles
such as Sudoku, mazes, and ARC-style tasks [10].
HRM combines multiple recurrent modules operating
at different “frequencies” with deep supervision across
many steps and relies heavily on data augmentation.
Follow-up analyses have suggested that deep super-
vision and augmentation contribute substantially to
performance, and that the theoretical justification for
some components may not strictly hold in practice
[2].

Tiny Recursive Models (TRM) build directly on
this line of work, simplifying the architecture while
improving performance on several benchmarks [7].
TRM replaces the dual-network hierarchy with a sin-
gle small network, makes the recursion mechanism
more explicit, and incorporates architectural choices
that favor efficiency on small grids. The original
TRM paper reports strong performance on Sudoku
Extreme, Maze Hard, ARC-AGI-1, and ARC-AGI-2,
and emphasizes that a 7M-parameter model can out-
perform many larger systems when combined with
heavy augmentation, deep supervision, and test-time
ensembling.

Subsequent technical reports have examined TRM
from complementary angles, including test-time adap-
tation and fine-tuning on new tasks [8]. These works
generally treat TRM as a black box and focus on end-
to-end performance. In contrast, our goal is to ana-
lyze the behavior of one fixed verification checkpoint
and to isolate the roles of puzzle identity, recursion
depth, and augmentation in that specific instance.

2.3 Large Language Models, Chain-of-
Thought, and Test-Time Compute

Large language models have shown substantial
progress on reasoning benchmarks, including ARC-
like tasks, when equipped with chain-of-thought
prompting and test-time adaptation. Chain-of-
thought methods explicitly elicit intermediate reason-
ing steps, often improving performance at the cost of
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increased inference time [11]. More recent work for-
malizes the notion of test-time compute and shows
that allocating additional sampling, search, or opti-
mization budget at inference time can sometimes be
as impactful as scaling model parameters [9].

Many of these methods rely on generating multi-
ple candidate trajectories per query and aggregat-
ing them, for example via self-consistency or major-
ity voting. This is conceptually similar to TRM’s
use of heavy augmentation and majority-vote ensem-
bling, though the underlying architectures and com-
pute regimes differ: autoregressive transformers have
high token-level latency, while TRM predicts entire
grids non-autoregressively.

Our work adopts this test-time compute perspec-
tive but applies it to a tiny non-autoregressive model.
Instead of proposing a new inference scheme, we
quantify how much of TRM’s reported performance
can be attributed to test-time compute, identity con-
ditioning, and recursion depth within the existing ver-
ification pipeline.

3 Experimental Setup

In this section we describe our experimental setup
in enough detail to permit reproduction. When we
make specific choices, such as checkpoint selection or
metric definitions, we motivate them and later discuss
their limitations.

3.1 Model and Checkpoint

We study the ARC Prize verification checkpoint for
TRM, which is publicly available via Hugging Face
as arcprize/trm_arc_prize_verification. We chose
this checkpoint for three reasons:

• Public availability. Using a publicly hosted
checkpoint allows others to reproduce our results
without access to private training infrastructure.

• Standard reference. Documentation from the
ARC Prize Foundation treats this checkpoint as
the canonical reference for verifying TRM per-
formance on ARC-AGI-1.

• Fixed hyperparameters. The checkpoint is
trained with a fixed recursion depth of four latent
cycles, whereas the original paper’s strongest
model uses six, providing a concrete, frozen tar-
get for analysis.

A limitation of this choice is that our results may
not hold for all TRM configurations. We explicitly
restrict our claims to this particular checkpoint and
treat generalization to other TRM variants as future
work.

3.2 Dataset and Evaluation Split

All main experiments are conducted on the ARC-
AGI-1 public evaluation set, which consists of 400
tasks. Each task contains 2–3 training examples and
1–2 test examples. We use the same split and eval-
uation pipeline as the verification scripts associated
with the TRM checkpoint.

We do not use ARC-AGI-2 or private competition
splits in our experiments. Focusing on ARC-AGI-
1 allows us to perform repeated ablations and per-
step analyses on a manageable dataset, and it aligns
with the evaluation setting for which the verification
checkpoint was designed.

3.3 Metrics

We report accuracy as Pass@1, defined as the fraction
of tasks for which the model’s top-scoring output ex-
actly matches the ground-truth output grid for the
held-out test example(s).

For experiments involving multiple candidate out-
puts, such as test-time augmentation with multiple
samples, we occasionally report Pass@1000 as a di-
agnostic metric, defined as the probability that at
least one of the sampled outputs is correct. In the
official TRM pipeline, performance is reported as
Pass@1 for the aggregated majority-vote prediction,
not as Pass@k over the raw sample set. We adhere
to that standard for our main ensemble analysis and
use Pass@k only when it serves an explanatory role.
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3.4 Augmentation Regimes

TRM’s training and evaluation pipelines both rely
heavily on input augmentation. We consider two aug-
mentation regimes:

• Canonical (aug 0). Only the canonical ARC
examples are used. No geometric or color aug-
mentations are applied.

• Heavy augmentation (aug 1000). For each
available demonstration pair, 1000 random aug-
mentations are generated using color permuta-
tions, dihedral symmetry transformations, and
translations within bounds that preserve task se-
mantics.

For the existing TRM checkpoint, the heavy aug-
mentation regime was used during training. For our
training dynamics experiments, we train new models
under each regime to partially disentangle the effects
of augmentation.

3.5 Computing Infrastructure

All experiments that require a GPU use a single
NVIDIA H100 with 80 GB of memory. For the main
TRM ablations, this choice is not essential; TRM’s
memory footprint is low enough that smaller devices
would suffice. The Llama 3 8B QLoRA baseline, how-
ever, benefits from the larger GPU memory.

When reporting efficiency metrics such as through-
put and latency, we emphasize that these numbers are
hardware-dependent and should be interpreted rela-
tively (TRM versus Llama) rather than as absolute
benchmarks.

4 Experiment 1: Ensemble Con-
tribution on ARC-AGI-1

4.1 Motivation

The TRM verification pipeline uses 1000 augmented
variations of each test puzzle and selects the final
answer via majority voting. This procedure can sub-
stantially improve performance even for models that

are individually weak, similar to how self-consistency
and ensemble sampling can improve LLM accuracy
[11, 9]. It is therefore important to separate the con-
tribution of the base model from the contribution of
test-time compute.

4.2 Design
We evaluate the verification checkpoint on the ARC-
AGI-1 public evaluation set under two conditions:

1. Paper mode (1000-sample ensemble). For
each puzzle, we generate 1000 augmented inputs
using the same augmentation pipeline as in the
verification code, run TRM on each augmented
input, and aggregate the predictions via major-
ity voting. We then compute Pass@1 for the
resulting single prediction per puzzle.

2. Single augmentation mode. For each puzzle,
we present a single canonical input without aug-
mentation, run TRM once, and directly compute
Pass@1 from the single prediction. No voting is
used.

All other settings, including the checkpoint, recur-
sion depth, and scoring function, match the verifica-
tion scripts.

4.3 Results
As shown in Table 1, the 1000-sample ensemble im-
proves Pass@1 by 10.75 percentage points over single-
pass canonical inference on ARC-AGI-1 (400 tasks).

Table 1: Impact of test-time ensembling on Pass@1
accuracy (ARC-AGI-1, 400 tasks).
Evaluation mode Augmentations Voting Pass@1

Paper mode (official) 1000 Yes 40.00%
Single augmentation 1 No 29.25%

4.4 Interpretation
This result confirms that test-time compute plays
an important role in TRM’s reported performance.
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At the same time, single-pass accuracy from a 7M-
parameter model remains notable and motivates the
deeper analyses that follow. We treat this experiment
as a baseline that sets the scale of ensemble effects;
later experiments on puzzle identity, recursion depth,
and training dynamics should be interpreted against
this backdrop.

5 Experiment 2: Puzzle Iden-
tity Ablation

5.1 Motivation

TRM includes a learned embedding table indexed by
puzzle IDs. During training and evaluation, each
puzzle is associated with a unique identifier that is
mapped to a high-dimensional embedding and inte-
grated into the model’s input representation. While
this design is visible in code, its behavioral conse-
quences have not been systematically measured.

Conceptually, puzzle-ID embeddings could act as
mild priors that group puzzles into families, or they
could function as critical keys for retrieving task-
specific behaviors. Distinguishing between these pos-
sibilities is important for understanding how TRM
organizes its capacity across tasks.

5.2 Design

We perform a controlled inference-time ablation on
the ARC-AGI-1 public evaluation set. For each puz-
zle, we consider three conditions:

1. Baseline. Use the original puzzle identifier as
in the verification script.

2. Blank ID. Replace all puzzle IDs with a single
fixed identifier whose embedding is trained but
does not correspond to any evaluation puzzle.

3. Random ID. Replace each puzzle ID with a ran-
dom identifier that does not match the puzzle’s
true ID.

In all conditions, we retain the full 1000-sample
augmentation and majority-vote pipeline used in the

verification setting. We then compute Pass@1 accu-
racy for each condition.

5.3 Results
As shown in Table 2, under both ablated conditions
(blank ID and random IDs), accuracy collapses to
zero, despite the fact that the input grids, augmen-
tation pipeline, and network parameters remain un-
changed.

Table 2: Effect of puzzle identity perturbations on
Pass@1 accuracy (ARC-AGI-1, 400 tasks).
Condition Puzzle ID input Pass@1

Baseline Correct IDs 40.00%
Blank ID Fixed “blank” token 0.00%
Randomized IDs Random token per task 0.00%

5.4 Interpretation
These results support the conclusion that the verifica-
tion checkpoint is functionally dependent on correct
puzzle identity. The puzzle ID does not behave like
a weak prior that can be removed with only a mod-
erate performance drop; instead, it is necessary for
producing correct outputs on ARC-AGI-1 under the
official evaluation protocol.

A natural hypothesis is that the identity embed-
ding acts as a key for retrieving a task-specific “pro-
gram” stored in the embedding space, while the small
recursive trunk serves as a shared interpreter. Under
this view, the system behaves like a neural hash map
over puzzles. We emphasize that this interpretation is
suggested by observed behavior rather than directly
validated by probing internal representations.

This experiment does not imply label leakage in
the usual sense: evaluation IDs do not overlap with
training IDs, so the model is not simply memoriz-
ing training labels for test puzzles. It does, however,
show that the ability to solve a particular evaluation
puzzle is tightly linked to the associated ID token,
which raises questions about how easily the model
could be applied to genuinely new tasks without pre-
defined identifiers.
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6 Experiment 3: Recursion Tra-
jectory Analysis

6.1 Motivation

TRM is designed to apply a fixed reasoning module
recursively to a latent state. Training uses deep su-
pervision across multiple recursion steps, suggesting
that these steps are expected to contribute to im-
proved performance. It is therefore natural to ask
how much each recursion step contributes in practice
and whether the model exhibits qualitatively differ-
ent behavior as recursion depth increases.

6.2 Design

Using the verification checkpoint and the ARC-AGI-1
public evaluation set, we perform the following pro-
cedure:

1. For each puzzle, we run the model’s forward pass
with recursion enabled up to the maximum num-
ber of latent cycles used during training (four in
this checkpoint).

2. After each recursion step (t), we decode the cur-
rent latent state into an output grid and record
the model’s predicted solution.

3. For each recursion depth (t), we compute Pass@1
by comparing the predictions at that depth to
the ground-truth solution, using the full 1000-
sample augmentation and majority-vote pipeline
at that depth.

4. As an extrapolation, we also evaluate perfor-
mance when the recursion module is iterated be-
yond the nominal training depth, up to six steps.

6.3 Results

As shown in Table 3, the model reaches most of its
final performance after the first recursion step: accu-
racy at step 1 is already very close to the accuracy
at step 4. Subsequent steps yield smaller gains, and
extending recursion beyond the training depth does
not change accuracy.

Table 3: Pass@1 accuracy at different recursion
depths (ARC-AGI-1, 400 tasks).
Recursion step t Pass@1 Relative to final (%)

1 38.25% 94.4%
2 40.38% 99.7%
3 40.13% 99.1%
4 40.50% 100.0%
6 (extrapolated) 40.50% 100.0%

6.4 Interpretation

For this checkpoint on ARC-AGI-1, most of the useful
computation occurs in the first recursion step. The
first application of the reasoning module determines
the bulk of the outcome, and subsequent steps act
as shallow refinements that provide modest improve-
ments.

From a design perspective, recursion and deep su-
pervision may still be important for learning a good
initial mapping, since training encourages the model
to improve predictions at multiple steps. However, at
inference time the deployed model behaves more like
a single-pass system with limited iterative correction
than like a deeply multi-step reasoning engine. We
do not claim that deeper recursion cannot be bene-
ficial in other settings or for other checkpoints; our
conclusion is restricted to the verification checkpoint
and dataset studied here.

7 Experiment 4: Training Dy-
namics Under Augmentation

7.1 Motivation

The original TRM training setup employs heavy aug-
mentation, generating many more training examples
per puzzle than are present in the canonical dataset.
This is made feasible by the model’s high through-
put. Augmentation can improve generalization by
exposing the model to diverse inputs, but it can also
complicate optimization and produce broad output
distributions. We investigate these trade-offs by com-
paring early training behavior under canonical-only
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and heavily augmented regimes.

7.2 Design

We train two TRM models from scratch on the ARC-
AGI-1 training set under the following regimes:

• aug 0 (canonical). Only canonical task exam-
ples are used. No geometric or color augmenta-
tions are applied.

• aug 1000 (heavy augmentation). For each
demonstration pair, 1000 random augmentations
are generated using the same transforms as in
the TRM pipeline.

Both models share identical architectures and op-
timization hyperparameters, except for the augmen-
tation pipeline. To manage computational cost, we
train each model for only the first 2,500 optimiza-
tion steps out of a nominal schedule of approximately
778,000 steps (about 0.3% of the full schedule). We
treat this as a snapshot of early training behavior
rather than as a fully converged model.

At this early checkpoint, we record:

• Training loss and training accuracy on the re-
spective training distributions.

• Evaluation Pass@1 and Pass@1000 on the ARC-
AGI-1 public evaluation set by drawing 1000 in-
dependent augmented samples per puzzle and
computing Pass@k directly over these sets, with-
out any majority-vote aggregation.

7.3 Results

As shown in Table 4, both models reach high training
accuracy on their respective training distributions, in-
dicating substantial memorization even at this early
stage. The canonical model trains slightly more eas-
ily, which is expected given its narrower distribution
of inputs.

As shown in Table 5, on ARC-AGI-1, the canon-
ical model shows essentially identical Pass@1 and
Pass@1000 at this step, whereas the heavily aug-
mented model achieves slightly higher Pass@1000

Table 4: Training metrics at step 2,500 (≈ 0.3% of
full schedule).
Metric aug 0 (canonical) aug 1000 (heavy)

Train loss 0.3720 0.5987
Train accuracy 91.71% 88.98%

than Pass@1. In the augmented regime, correct solu-
tions appear among the sampled outputs more often
than they appear as the top-ranked prediction.

Table 5: Evaluation metrics at step 2,500 (ARC-AGI-
1, 400 tasks).
Metric aug 0 (canonical) aug 1000 (heavy)

Pass@1 0.38% 0.00%
Pass@1000 0.38% 1.63%

7.4 Interpretation
Three qualitative observations emerge:

1. Both models rapidly memorize substantial por-
tions of their training data, but this does not
immediately translate into strong evaluation per-
formance on ARC-AGI-1.

2. Under canonical training, when the model is
correct, the correct solution tends to be its
top prediction, leading to similar Pass@1 and
Pass@1000. Under heavy augmentation, the
model more frequently includes the correct so-
lution among its samples, but its argmax predic-
tion is often wrong at this early stage.

3. Multi-sample metrics show benefits for the aug-
mented model before single-pass accuracy im-
proves, suggesting that heavy augmentation en-
courages a broader set of plausible outputs per
puzzle.

Because these models are extremely undertrained
relative to the final TRM checkpoint, we treat these
observations as qualitative. Fully trained models may
have more concentrated solution distributions, but
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the early-stage behavior already illustrates how aug-
mentation interacts with ensembling and coverage.

8 Experiment 5: Efficiency and
LLM Baseline

8.1 Motivation
TRM’s non-autoregressive design is explicitly moti-
vated by efficiency considerations. A key claim of
the original TRM paper is that the model’s small
size and parallel grid prediction enable heavy aug-
mentation and ensembling that would be impractical
for standard transformers. To provide concrete refer-
ence numbers, we compare TRM to a simple QLoRA
fine-tune of Llama 3 8B on canonical ARC-AGI-1.

8.2 Design
We train a Llama 3 8B Instruct model [6] using
QLoRA [5] on the canonical ARC-AGI-1 training set.
The setup is deliberately simple:

• We use a standard QLoRA configuration with
low-rank adapters.

• We train for a small number of epochs on the
canonical examples only, without synthetic data.

• We do not use chain-of-thought prompting, test-
time training, or specialized tokenization for
ARC.

This baseline is intended as a low-resource,
straightforward supervised fine-tuning regime. It is
not meant to represent the state of the art in LLM-
based ARC systems, which often rely on more elabo-
rate training and inference strategies.

We then evaluate both TRM and the Llama base-
line on ARC-AGI-1 under single-pass canonical in-
ference and measure throughput, latency, and peak
VRAM usage on an H100 GPU.

8.3 Results
Under this naive fine-tuning regime, the Llama 3
8B baseline achieves approximately 2.15% Pass@1

on ARC-AGI-1, which indicates poor generalization
from the small canonical dataset alone.

The efficiency profile on an H100 is summarized in
Table 6.

Table 6: Efficiency profile on NVIDIA H100 (80 GB).
Model Peak VRAM Throughput Latency

TRM (7M parameters) 2.4 GB 31.3 samples/s 31.9 ms/sample
Llama 3 8B (QLoRA) 6.1 GB 0.24 samples/s 4170 ms/sample

TRM requires substantially less memory and
achieves much higher throughput than the Llama
baseline on the same hardware, while also achieving
higher accuracy in this setting.

8.4 Interpretation
These results confirm that TRM has a strong effi-
ciency advantage over a generic 8B-parameter trans-
former in this setup and that its inductive bias is
better aligned with ARC-style tasks under simple su-
pervised training. However, efficiency alone does not
fully explain TRM’s performance. The ensemble and
identity ablation experiments show that reported ac-
curacy on ARC-AGI-1 depends on how this efficiency
is used: TRM converts low latency into the ability to
run extensive augmentation and voting, and it relies
on puzzle-specific embeddings to organize behavior
across tasks. The architecture, training procedure,
and evaluation protocol are tightly coupled.

9 Discussion
This section synthesizes the empirical findings from
our experiments and situates them within the broader
context of recursive models and reasoning bench-
marks. We distinguish direct observations from in-
terpretive hypotheses and make clear where our con-
clusions are specific to the analyzed checkpoint.

9.1 Puzzle Identity as a Central Con-
ditioning Signal

The puzzle-identity ablation shows that the TRM ver-
ification checkpoint is functionally dependent on the
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presence of the correct puzzle identifier. Replacing
the puzzle ID with either a fixed “blank” token or
a random token reduces accuracy to zero under the
verification protocol, despite unchanged inputs and
parameters. This implies that the model’s ability to
produce correct outputs for a given puzzle is tightly
coupled to the corresponding identity embedding.

We interpret this as evidence that puzzle-ID em-
beddings play a central role in organizing the model’s
behavior. A natural behavioral hypothesis is that
the identity embedding acts as a key into a space of
task-specific behaviors, with the small recursive trunk
serving as a shared computation mechanism. Under
this view, a substantial fraction of the system’s effec-
tive capacity resides in the embedding table and its
interaction with the augmented training distribution,
rather than solely in the 7M-parameter trunk.

This conclusion is specific to the studied check-
point under the ARC-AGI-1 evaluation protocol. It
does not imply that TRM-like architectures cannot
be trained to rely less on explicit identity condition-
ing, nor that identity embeddings constitute label
leakage in the usual sense.

9.2 Shallow Effective Recursion

The recursion trajectory analysis indicates that, for
the verification checkpoint on ARC-AGI-1, most of
the useful computation occurs in the first recursion
step. The model reaches nearly all of its final accu-
racy at step 1, with subsequent steps providing mod-
est refinements, and extending recursion beyond the
training depth does not change performance.

These findings suggest that, although the model
is trained with multiple supervised recursion steps,
its deployed behavior is effectively shallow. The first
application of the reasoning module appears to deter-
mine the bulk of the outcome, with later steps func-
tioning mainly as minor corrections. Recursion and
deep supervision may still be important for learning
a robust initial mapping, but at inference time the
model behaves more like a single-pass system with
limited iterative refinement.

Again, this conclusion is restricted to the verifi-
cation checkpoint and dataset studied here. Other

TRM configurations or tasks might make more sub-
stantial use of deeper recursion.

9.3 Augmentation, Ensembling, and
the Shape of the Solution Distri-
bution

The combination of the ensemble analysis and the
training dynamics experiments clarifies how augmen-
tation and voting shape TRM’s behavior. The 1000-
sample augmentation and majority-vote pipeline con-
tributes a significant absolute improvement in Pass@1
over single-pass canonical inference. In early train-
ing, a canonical-only model exhibits similar Pass@1
and Pass@1000, whereas a heavily augmented model
shows higher Pass@1000 than Pass@1.

This pattern is consistent with a broader, more dif-
fuse distribution of candidate outputs under heavy
augmentation, where metrics that consider “at least
one correct sample” can improve even when the
argmax prediction remains wrong. Heavy augmenta-
tion encourages the model to represent a larger set of
plausible outputs for each puzzle. In our training dy-
namics study, Pass@1000 is computed directly over
raw samples without aggregation, so the improve-
ment reflects increased coverage rather than better
ranking. In the full verification pipeline, similar aug-
mentation is combined with majority voting, which
aggregates this broader distribution into a single pre-
diction.

Because our training experiments are short-
horizon, we view these observations as qualitative.
Fully trained models may have more concentrated so-
lution distributions, but the early-stage behavior al-
ready illustrates how augmentation and ensembling
interact.

9.4 Efficiency as an Enabler Rather
Than a Standalone Explanation

Our efficiency measurements show that TRM
achieves much higher throughput and lower memory
usage than a naive QLoRA fine-tuned Llama 3 8B
baseline while also attaining substantially higher ac-
curacy under a comparable canonical-only training
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regime. This confirms that TRM’s architecture is not
only efficient but also better aligned with ARC-style
tasks than a generic transformer of similar training
budget.

However, efficiency alone does not explain the ob-
served performance. The ensemble and identity ab-
lation experiments indicate that reported scores on
ARC-AGI-1 depend on how this efficiency is used.
The system converts low latency into the ability to
run extensive augmentation and voting, and it relies
on puzzle-specific embeddings to organize behavior
across tasks. In other words, architecture, training
procedure, and evaluation protocol jointly determine
performance.

Our results therefore support a nuanced view:
TRM’s efficiency is a key enabling factor for heavy
augmentation and ensembling, but the achieved ac-
curacy on ARC-AGI-1 is the product of this effi-
ciency interacting with strong per-task conditioning
and shallow but effective recursion.

10 Limitations

We summarize the main limitations of our analysis to
clarify the scope of our conclusions.

1. Single checkpoint and configuration. All
detailed ablations are performed on a single pub-
licly released verification checkpoint with a spe-
cific recursion depth and training history. Other
TRM checkpoints, or models trained with dif-
ferent hyperparameters or datasets, may exhibit
qualitatively different behavior. Our claims
should therefore be understood as applying to
this particular instance of TRM, not to all pos-
sible TRM-like architectures.

2. Restricted datasets and tasks. We focus
exclusively on ARC-AGI-1 for both evaluation
and most training experiments. We do not ana-
lyze ARC-AGI-2, Sudoku Extreme, Maze Hard,
or other benchmarks where TRM has been re-
ported to perform well [7]. Consequently, we can-
not directly explain why the full TRM training
pipeline achieves higher relative gains on some

tasks or why performance differs between ARC-
AGI-1 and ARC-AGI-2. Any connections to
those results are conjectural.

3. Early training snapshot in augmentation
experiments. In our augmentation comparison,
both models are trained for only a small fraction
of the nominal schedule. The purpose of these
experiments is to illustrate qualitative trends in
training dynamics and solution distributions, not
to characterize fully converged models. It is pos-
sible that the relative behavior of canonical-only
and heavily augmented models changes later in
training.

4. Naive large language model baseline. The
Llama 3 8B QLoRA baseline is intentionally sim-
ple. It uses a straightforward supervised fine-
tuning setup on canonical ARC-AGI-1 examples,
without synthetic data, task-specific tokeniza-
tion, or advanced test-time training. As such,
it does not represent the state of the art in LLM-
based ARC systems. We use it only as a refer-
ence point for illustrating differences in inductive
bias and efficiency, not as a definitive compara-
tor.

5. Behavioral analysis only. Our conclusions
are based on input–output behavior (accuracy
under different conditions, efficiency metrics)
and limited code inspection. We do not per-
form a detailed analysis of internal representa-
tions or dynamics, for example via probing, at-
tribution methods, or mechanistic interpretabil-
ity tools. The “neural hash map” interpretation
of puzzle-ID conditioning is therefore a hypothe-
sis suggested by observed behavior, not a direct
claim about the internal geometry of the embed-
ding space.

6. Fixed evaluation protocol. All experiments
respect the ARC Prize verification pipeline’s
evaluation protocol, including specific augmen-
tation schemes and scoring definitions. While
this ensures comparability with reported ver-
ification scores, it also means that our anal-
ysis does not explore alternative inference
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strategies—such as different ensemble sizes, al-
ternative voting schemes, or modified augmenta-
tion distributions—that might yield additional
insight.

11 Reproducibility

To facilitate further research, we provide a brief de-
scription of the resources needed to reproduce the
experiments in this note.

• Code repository. All scripts used for data
preparation, evaluation, and experiments are
contained in a public repository at https://gith
ub.com/AntonioRoye/TinyRecursiveModels, in-
cluding configuration files, logging utilities, and
experiment drivers.

• Checkpoint retrieval. The TRM verification
checkpoint used in all ablations can be obtained
from Hugging Face as arcprize/trm_arc_prize
_verification. Scripts for downloading and con-
verting this checkpoint into the format expected
by the repository are provided.

• Dataset preparation. Scripts for prepar-
ing canonical and augmented ARC-AGI-1
datasets are provided. These scripts gener-
ate directories such as data/arc-aug-0 and
data/arc-aug-1000 that correspond to the
canonical and heavily augmented regimes, re-
spectively.

• Experiment scripts. Dedicated entry points
are provided for running the ensemble analy-
sis, puzzle-identity ablation, recursion trajectory
study, training dynamics comparison, and effi-
ciency profiling. Each script reads configuration
files that specify paths, hyperparameters, and
random seeds.

We encourage readers to treat the reported num-
bers as reference values for this particular checkpoint
rather than as definitive limits on what TRM-like ar-
chitectures can achieve.

12 Conclusion

This technical note has presented a set of targeted em-
pirical studies that clarify several aspects of the Tiny
Recursive Model as instantiated in the ARC Prize
verification checkpoint on ARC-AGI-1.

We have shown that test-time augmentation and
majority-vote ensembling contribute a substantial ab-
solute improvement in Pass@1 over single-pass canon-
ical inference, that puzzle-identity embeddings are a
strict dependency for this checkpoint under the verifi-
cation protocol, and that the effective depth of recur-
sion is shallow, with most performance achieved at
the first recursion step. We have also shown that
heavy augmentation modifies the structure of the
model’s predictions, increasing coverage under multi-
sample metrics before improving single-pass preci-
sion, and that TRM’s non-autoregressive design af-
fords high throughput and low memory usage com-
pared to a naive 8B LLM baseline.

Taken together, these findings suggest that TRM’s
success on ARC-AGI-1 is best understood as an inter-
action between a highly efficient architecture, strong
per-task conditioning, and aggressive test-time com-
pute, rather than as evidence of arbitrarily deep in-
ternal reasoning. Future work could extend this anal-
ysis by training and evaluating TRM variants with
reduced or grouped puzzle-identity conditioning, sys-
tematically exploring different recursion depths at
both training and inference time, and comparing
TRM to alternative tiny architectures under matched
augmentation and compute budgets.

We hope that this note serves as a useful reference
for researchers studying recursive models on ARC
and related benchmarks, and that it encourages more
transparent reporting of the roles played by task iden-
tifiers, augmentation, and test-time compute in fu-
ture work.
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